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Abstract

This paper deals with the initial-boundary value problem for Kirchhoff-type parabolic system
with logarithmic source term. We discuss the global existence and exponential energy decay
estimates of weak solutions under some conditions by employing potential method.
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1 Introduction

In this paper, we investigate the global existence and decay of solutions for the Kirchhoff type
parabolic system with logarithmic source term

ut −M(‖∇u‖2 + ‖∇v‖2)∆u−∆ut = |u|q−2
u ln |u| , x ∈ Ω, t > 0,

vt −M(‖∇u‖2 + ‖∇v‖2)∆v −∆vt = |v|q−2
v ln |v| , x ∈ Ω, t > 0,

u(x, t) = 0, v(x, t) = 0 x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω,

(1.1)

where Ω is a bound domain in Rn with smooth boundary, M(s) = 1 + sγ , (γ > 0) and 2γ + 2 ≤ q.
Studies of logarithmic nonlinearity have a long history in physics as it occurs naturally in

different areas of physics such as supersymmetric field theories, inflation cosmology, nuclear physics
and quantum mechanics [1, 2].

When M ≡ 1 and q = 2, the system (1.1) become semilinear pseudo-parabolic equation as follow

ut −∆u−∆ut = u ln |u| . (1.2)

Chen and Tian [3] obtained the global existence, behavior of vacuum isolation and blow-up
of solutions at +∞ of the equation (1.2). Without ∆ut, the equation (1.2) become the following
semilinear parabolic equation

ut −∆u = u ln |u| . (1.3)

Chen et al. [4] studied the global existence, decay and blow-up at +∞ of solutions of the equation
(1.3).

When M ≡ 1 and q > 2, Peng and Zhou [5] investigated the following parabolic equation with
logarithmic source term

ut −∆u = |u|q−2
u ln |u| .
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154 Tuğrul Cömert, Erhan Pişkin

They studied the global existence and blow-up of solutions. Also, they discussed the upper bound
of blow-up time under suitable conditions.

Nhan and Truong [6] studied the following nonlinear pseudo-parabolic equation

ut −∆ut − div
(
|∇u|p−2∇u

)
= |u|q−2

u ln |u| .

They studied results as regard the existence or non-existence of global solutions. Also, He et al. [7]
investigated the decay and the finite time blow-up for solutions of the equation.

Cao and Liu [8] studied the following nonlinear evolution equation with logarithmic source term

ut − div
(
|∇u|p−2∇u

)
− k∆ut = |u|q−2

u ln |u| .

They established the existence of global weak solutions. Moreover, they considered global bound-
edness and blowing-up at ∞.

Pişkin and Cömert [9] studied the following Kirchhoff type parabolic equation

ut −M(‖∇u‖2)∆u−∆ut = |u|q−2
u ln |u| .

They studied the finite time blow-up for weak solutions by employing potential well method and
concavity method.

Yang et al. [10] considered the following equation

utt −M
(
‖∇u‖2

)
∆u+ |ut|p−1

ut −∆ut = uq−1 ln |u| , (1.4)

where M (s) = α+βsγ , γ > 0, α ≥ 1, β > 0. They studied existence finite time blow up of solutions.
Wang et. al [11] investigated the following Kirchhoff type system with logarithmic source term utt +M

(
‖∇u‖2 + ‖∇v‖2

)
∆u+ ut = |u|q−2

u ln |u| ,

vtt +M
(
‖∇u‖2 + ‖∇v‖2

)
∆v + vt = |v|q−2

v ln |v| ,

with M (s) = α+ βsγ , γ > 0, α ≥ 1, β ≥ 0 and q ≥ 2γ + 2. They studied global existence and finite
time blow up under the different conditions by employing potential well method and concavity
method.

Recently many other authors investigated parabolic or hyperbolic type equations with logarith-
mic nonlinearity (see [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]).

Motivated by the above studies, in this work we investigate the global existence and decay
estimate of solutions for the Eq. (1.1).

Our plan in this paper is as follows: In Section 2, we discussed some lemmas which will be
needed later. In Section 3, we proved that the global existence and exponential decay of solutions.

2 Preliminaries

For simplicity, we denote

‖u‖ = ‖u‖L2(Ω) , ‖u‖s = ‖u‖Ls(Ω) , ‖u‖H1
0 (Ω) =

(
‖u‖2 + ‖∇u‖2

) 1
2

,
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for 1 < s <∞.
For H1

0 (Ω)×H1
0 (Ω)\{0}, we define the energy functional

J(u, v) =
1

2

(
‖∇u‖2 + ‖∇v‖2

)
+

1

2 (γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

−1

q

(∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)

+
1

q2

(
‖u‖qq + ‖v‖qq

)
, (2.1)

and Nehari functional

I(u, v) =
(
‖∇u‖2 + ‖∇v‖2

)
+
(
‖∇u‖2 + ‖∇v‖2

)γ+1

−
(∫

Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)
. (2.2)

By (2.1) and (2.2), we get

J(u, v) =
1

q
I(u, v) +

q − 2

2q

(
‖∇u‖2 + ‖∇v‖2

)
+
q − 2γ − 2

2qγ + 2q

(
‖∇u‖2 + ‖∇v‖2

)γ+1

+
1

q2

(
‖u‖qq + ‖v‖qq

)
. (2.3)

Let
N = {(u, v) ∈ H1

0 (Ω)×H1
0 (Ω)\{0} : I(u, v) = 0},

be the Nehari manifold. Also, we may define

d = inf
(u,v)∈N

J(u, v), (2.4)

and
W = {(u, v) ∈ H1

0 (Ω)×H1
0 (Ω)\{0} : J(u, v) < d, I(u, v) > 0}.

We refer to W as the potential well and d as the depth of the well.

Lemma 2.1. J(u, v) is a nonincreasing function for t ≥ 0 and

d

dt
J (u, v) = −

(
‖ut‖2 + ‖vt‖2

)
−
(
‖∇ut‖2 + ‖∇vt‖2

)
≤ 0. (2.5)

Proof. Multiplying the first equation (1.1) by ut and the second equation (1.1) by vt, and integrating
on Ω, we have ∫

Ω

|ut|2 dx+
1

2

[
1 +

(
‖∇u‖2 + ‖∇v‖2

)γ] d
dt
‖∇u‖2 +

∫
Ω

|∇ut|2 dx

=
d

dt

(
1

q

∫
Ω

|u|q ln |u| dx− 1

q2

∫
Ω

|u|q dx
)
, (2.6)
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and ∫
Ω

|vt|2 dx+
1

2

[
1 +

(
‖∇u‖2 + ‖∇v‖2

)γ] d
dt
‖∇v‖2 +

∫
Ω

|∇vt|2 dx

=
d

dt

(
1

q

∫
Ω

|v|q ln |v| dx− 1

q2

∫
Ω

|v|q dx
)
. (2.7)

From (2.6) and (2.7), we obtain∫
Ω

(
|ut|2 + |vt|2

)
dx+

∫
Ω

(
|∇ut|2 + |∇vt|2

)
dx

+
1

2

[
1 +

(
‖∇u‖2 + ‖∇v‖2

)γ] d
dt

(
‖∇u‖2 + ‖∇v‖2

)
=

d

dt

(
1

q

∫
Ω

(|u|q ln |u|+ |v|q ln |v|) dx− 1

q2

∫
Ω

(|u|q + |v|q) dx
)
. (2.8)

Thus, by (2.8), we obtain

d

dt

(
1

2

(
‖∇u‖2 + ‖∇v‖2

)
+

1

2 (γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1
)

− d

dt

(
1

q

(∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)
− 1

q2

(
‖u‖qq + ‖v‖qq

))
= −

(
‖ut‖2 + ‖vt‖2

)
−
(
‖∇ut‖2 + ‖∇vt‖2

)
,

that is
d

dt
J (u, v) = −

(
‖ut‖2 + ‖vt‖2

)
−
(
‖∇ut‖2 + ‖∇vt‖2

)
≤ 0.

Moreover, integrating (2.8) with respect to t on [0, t] , we arrive at∫ t

0

(
‖uτ‖2 + ‖vτ‖2

)
dτ +

∫ t

0

(
‖∇uτ‖2 + ‖∇vτ‖2

)
dτ

+
1

2

∫ t

0

[
1 +

(
‖∇u‖2 + ‖∇v‖2

)γ]
d
(
‖∇u‖2 + ‖∇v‖2

)
=

1

q

∫
Ω

(|u|q ln |u|+ |v|q ln |v|) dx− 1

q2

(
‖u‖qq + ‖v‖qq

)
−1

q

∫
Ω

(|u0|q ln |u0|+ |v0|q ln |v0|) dx+
1

q2

(
‖u0‖qq + ‖v0‖qq

)
. (2.9)

We deal with the third term in the left hand of (2.9) as follows

1

2

∫ t

0

[
1 +

(
‖∇u‖2 + ‖∇v‖2

)γ]
d
(
‖∇u‖2 + ‖∇v‖2

)
=

1

2

(
‖∇u‖2 + ‖∇v‖2

)
− 1

2

(
‖∇u0‖2 + ‖∇v0‖2

)
+

1

2(γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

− 1

2(γ + 1)

(
‖∇u0‖2 + ‖∇v0‖2

)γ+1

. (2.10)
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Inserting (2.10) into (2.9), and obtain∫ t

0

(
‖uτ‖2 + ‖vτ‖2

)
dτ +

∫ t

0

(
‖∇uτ‖2 + ‖∇vτ‖2

)
dτ +

1

2

(
‖∇u‖2 + ‖∇v‖2

)
+

1

2(γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

− 1

q

∫
Ω

(|u|q ln |u|+ |v|q ln |v|) dx+
1

q2

(
‖u‖qq + ‖v‖qq

)
=

1

2

(
‖∇u0‖2 + ‖∇v0‖2

)
+

1

2(γ + 1)

(
‖∇u0‖2 + ‖∇v0‖2

)γ+1

−1

q

∫
Ω

(|u0|q ln |u0|+ |v0|q ln |v0|) dx+
1

q2

(
‖u0‖qq + ‖v0‖qq

)
, (2.11)

that is ∫ t

0

(
‖uτ‖2 + ‖vτ‖2

)
dτ +

∫ t

0

(
‖∇uτ‖2 + ‖∇vτ‖2

)
dτ + J(u, v) = J (u0, v0) . (2.12)

q.e.d.

Lemma 2.2. Let (u, v) ∈ H1
0 (Ω) × H1

0 (Ω)\{0}, we consider the function j : λ → J(λu, λv) for
λ > 0. Then we possess

(i) limλ→0+ j(λ) = 0 and limλ→+∞ j(λ) = −∞;

(ii) there is a unique λ∗ > 0 such that j′(λ∗) = 0;

(iii) j(λ) is increasing on (0, λ∗), decreasing on (λ∗,+∞) and taking the maximum at λ∗; I(λu) =
λj′(λ) and

I(λu)

 > 0, 0 < λ < λ∗,
= 0, λ = λ∗,
< 0, λ∗ < λ < +∞.

Proof. By the definition of j, for (u, v) ∈ H1
0 (Ω)×H1

0 (Ω)\{0}, we get

j(λ) =
1

2

(
‖∇ (λu)‖2 + ‖∇ (λv)‖2

)
+

1

2 (γ + 1)

(
‖∇ (λu)‖2 + ‖∇ (λv)‖2

)γ+1

−1

q

(∫
Ω

|λu|q ln |λu| dx+

∫
Ω

|λv|q ln |λv| dx
)

+
1

q2

(
‖λu‖qq + ‖λv‖qq

)
=

λ2

2

(
‖∇u‖2 + ‖∇v‖2

)
+

λ2(γ+1)

2 (γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

−λ
q

q

(∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)
− λq

q
lnλ

(
‖u‖qq + ‖v‖qq

)
+
λq

q2

(
‖u‖qq + ‖v‖qq

)
. (2.13)
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We see that (i) holds due to
∫

Ω
(|u|q + |v|q) dx 6= 0. We have

d

dλ
j(λ) = λ

(
‖∇u‖2 + ‖∇v‖2

)
+ λ2γ+1

(
‖∇u‖2 + ‖∇v‖2

)γ+1

−λq−1

(∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)
− λq−1 lnλ

(
‖u‖qq + ‖v‖qq

)
−λ

q−1

q

(
‖u‖qq + ‖v‖qq

)
+
λq−1

q

(
‖u‖qq + ‖v‖qq

)
= λ

(
‖∇u‖2 + ‖∇v‖2

)
+ λ2γ+1

(
‖∇u‖2 + ‖∇v‖2

)γ+1

−λq−1

(∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)
− λq−1 lnλ

(
‖u‖qq + ‖v‖qq

)
.

Let ϕ(λ) = λ−1j′(λ), thus we obtain

ϕ(λ) = λ−1j′(λ)

=
(
‖∇u‖2 + ‖∇v‖2

)
+ λ2γ

(
‖∇u‖2 + ‖∇v‖2

)γ+1

−λq−2

(∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)
− λq−2 lnλ

(
‖u‖qq + ‖v‖qq

)
.

Then

ϕ′(λ) = 2γλ2γ−1
(
‖∇u‖2 + ‖∇v‖2

)γ+1

− (q − 2)λq−3

(∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)

−(q − 2)λq−3 lnλ
(
‖u‖qq + ‖v‖qq

)
− λq−3

(
‖u‖qq + ‖v‖qq

)
,

which yields that there exists a λ∗ > 0 such that ϕ′(λ) > 0 on (0, λ∗), ϕ′(λ) < 0 on (λ∗,+∞)
and on ϕ′(λ) = 0. So, ϕ(λ) is increasing on (0, λ∗), decreasing on (λ∗,+∞). Since limλ→0+ ϕ(λ) =(
‖∇u‖2 + ‖∇v‖2

)
> 0, limλ→+∞ ϕ(λ) = −∞, there exists a unique λ∗ > 0 such that ϕ(λ∗) = 0,

i.e., j′(λ∗) = 0. So (ii) holds. Then, j′(λ) = λϕ(λ) is positive on (0, λ∗), negative on (λ∗,+∞).
Thus, j(λ) is increasing on (0, λ∗), decreasing on (λ∗,+∞) and taking the maximum at λ∗. From
(2.2), we get

I(λu, λv) =
(
‖∇ (λu)‖2 + ‖∇ (λv)‖2

)
+
(
‖∇ (λu)‖2 + ‖∇ (λv)‖2

)γ+1

−
(∫

Ω

|λu|q ln |λu| dx+

∫
Ω

|λv|q ln |λv| dx
)

= λ2
(
‖∇u‖2 + ‖∇v‖2

)
+ λ2(γ+1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

−λq
(∫

Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)
− λq lnλ

(
‖u‖qq + ‖v‖qq

)
= λj′(λ).

Thus, I(λu, λv) > 0 for 0 < λ < λ∗, I(λu, λv) < 0 for λ∗ < λ < +∞ and I(λ∗u, λ∗v) = 0. So (iii)
holds. For this reason, the proof is completed. q.e.d.
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Lemma 2.3. d defined by (2.4) is positive and there exists a positive function u, v ∈ N such that
J(u, v) = d.

Proof. Let {uk, vk}∞k ⊂ N be a minimizing sequence for J, which means that

lim
k→∞

J(uk, vk) = d. (2.14)

We can easy show that {|uk, vk|}k ⊂ N is also a minimizing sequence for J due to |uk, vk| ∈ N and
J(|uk, vk|) = J(uk, vk). Therefore, we can suppose that uk, vk > 0 a.e. Ω for all k ∈ N.

Moreover, we have already observed that J is coercive on N which satisfies that {uk, vk}∞k is
bounded in H1

0 (Ω) ×H1
0 (Ω). Let µ > 0 be small enough such that q + µ < 2n

n−2 . Since H1
0 (Ω) ↪→

Lq+µ(Ω) is compact, so there exists a function u and a subsequence of {uk, vk}∞k , still denote by
{uk, vk}∞k , such that

uk → u weakly in H1
0 (Ω),

vk → v weakly in H1
0 (Ω),

uk → u strongly in Lq+µ(Ω),

vk → v strongly in Lq+µ(Ω),

uk(x)→ u(x) a.e. in Ω,

vk(x)→ v(x) a.e. in Ω.

Also, u, v ≥ 0 a.e. in Ω. First, we prove u, v 6= 0. From the dominated convergence theorem, we get∫
Ω

|u|q ln |u| dx = lim
k→∞

∫
Ω

|uk|q ln |uk| dx, (2.15)

∫
Ω

|v|q ln |v| dx = lim
k→∞

∫
Ω

|vk|q ln |vk| dx,

and ∫
Ω

|u|q dx = lim
k→∞

∫
Ω

|uk|q dx, (2.16)∫
Ω

|v|q dx = lim
k→∞

∫
Ω

|vk|q dx.

From the weak lower semicontinuity of H1
0 (Ω)×H1

0 (Ω), we get

‖∇u‖2 + ‖∇v‖2 ≤ lim inf
k→∞

(
‖∇u‖2 + ‖∇v‖2

)
, (2.17)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

≤ lim
k→∞

(
‖∇u‖2 + ‖∇v‖2

)γ+1

.
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Using (2.1), (2.14), (2.15), (2.16) and (2.17), we have

J(u, v) =
1

2

(
‖∇u‖2 + ‖∇v‖2

)
+

1

2 (γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

−1

q

(∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)

+
1

q2

(
‖u‖qq + ‖v‖qq

)
≤ lim inf

k→∞

1

2

(
‖∇u‖2 + ‖∇v‖2

)
+ lim
k→∞

1

2 (γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

− lim
k→∞

1

q

(∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)

+ lim
k→∞

1

q2

(
‖u‖qq + ‖v‖qq

)
= lim inf

k→∞
J(uk) = d. (2.18)

Using (2.2), (2.15) and (2.17), we have

I(u, v) =
(
‖∇u‖2 + ‖∇v‖2

)
+
(
‖∇u‖2 + ‖∇v‖2

)γ+1

−
(∫

Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)

≤ lim inf
k→∞

(
‖∇u‖2 + ‖∇v‖2

)
+ lim
k→∞

(
‖∇u‖2 + ‖∇v‖2

)γ+1

− lim
k→∞

(∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)

= lim inf
k→∞

I(uk) = 0. (2.19)

Since (uk, vk) ∈ N , we have I(uk, vk) = 0. So, by employing the fact α−µ lnα ≤ (eµ)−1 for α ≥ 1
and the Sobolev embedding inequality, we get(

‖∇u‖2 + ‖∇v‖2
)

+
(
‖∇u‖2 + ‖∇v‖2

)γ+1

=

∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx

≤ (eµ)−1

(∫
Ω

|uk|q+µ dx+

∫
Ω

|vk|q+µ dx
)

≤ (eµ)−1
(
‖uk‖q+µq+µ + ‖vk‖q+µq+µ

)
≤ C

(
‖∇uk‖q+µ2 + ‖∇vk‖q+µ2

)
,

where C is positive and Sobolev embedding constant. This yields that∫
Ω

|uk|q ln |uk| dx+

∫
Ω

|vk|q ln |vk| dx = ‖∇uk‖2 + ‖∇vk‖2 ≥ C. (2.20)

By (2.20) and (2.15), we obtain∫
Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx ≥ C.
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Thus, we have (u, v) ∈ H1
0 (Ω)×H1

0 (Ω)\{0}.
If I(uk, vk) < 0, by Lemma 2.2, there exists a λ∗ such that I(λ∗u, λ∗v) = 0 and 0 < λ∗ < 1.

Thus, (λ∗u, λ∗v) ∈ N . By (2.3), (2.4), (2.16) and (2.17), we get

d ≤ J(λ∗u, λ∗v)

=
1

q
I(λ∗u, λ∗v) +

q − 2

2q

(
‖∇ (λ∗u)‖2 + ‖∇ (λ∗v)‖2

)
+
q − 2γ − 2

2qγ + 2q

(
‖∇ (λ∗u)‖2 + ‖∇ (λ∗v)‖2

)γ+1

+
1

q2

(
‖λ∗u‖qq + ‖λ∗v‖qq

)
=

q − 2

2q

(
‖∇ (λ∗u)‖2 + ‖∇ (λ∗v)‖2

)
+
q − 2γ − 2

2qγ + 2q

(
‖∇ (λ∗u)‖2 + ‖∇ (λ∗v)‖2

)γ+1

+
1

q2

(
‖λ∗u‖qq + ‖λ∗v‖qq

)
≤ (λ∗)2

[
q − 2

2q

(
‖∇u‖2 + ‖∇v‖2

)
+
q − 2γ − 2

2qγ + 2q

(
‖∇u‖2 + ‖∇v‖2

)γ+1
]

+(λ∗)2 1

q2

(
‖u‖qq + ‖v‖qq

)
≤ (λ∗)2lim inf

k→∞

[
q − 2

2q

(
‖∇u‖2 + ‖∇v‖2

)
+
q − 2γ − 2

2qγ + 2q

(
‖∇u‖2 + ‖∇v‖2

)γ+1
]

+(λ∗)2lim inf
k→∞

1

q2

(
‖u‖qq + ‖v‖qq

)
= (λ∗)2lim inf

k→∞
J(uk)

= (λ∗)2d,

which indicates λ∗ ≥ 1 by d > 0. It contradicts 0 < λ∗ < 1. Then, by (2.19), we have I(u, v) = 0.
For this reason, u, v ∈ N . By (2.14), we have J(u, v) ≥ d. By (2.18), we have J(u, v) ≤ d. So,
J(u, v) = d. q.e.d.

Lemma 2.4. [6] For any u ∈ H1
0 (Ω), p ≥ 1, and r ≥ 1, the inequality

‖u‖q ≤ C ‖∇u‖
θ
p ‖u‖

1−θ
r ,

is valid, where

θ =

(
1

r
− 1

q

)(
1

n
− 1

p
+

1

r

)−1

,

and
-for p ≥ n = 1, r ≤ q ≤ ∞;
-for n > 1 and p < n, q ∈ [r, p∗] if r ≤ p∗ and q ∈ [p∗, r] if r ≥ p∗;
-for p = n > 1, r ≤ q <∞;
-for p > n > 1, r ≤ q ≤ ∞.
Here, the constant C depends on n, p, q and r.
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Lemma 2.5. [25] Let f : R+ → R+ be a nonincreasing function and σ is a nonnegative constant
such that ∫ +∞

t

f1+σ(s)ds ≤ 1

ω
fσ(0)f(t), ∀t ≥ 0.

Hence

(a) f(t) ≤ f(0)e1−ωt, for all t ≥ 0, whenever σ = 0,

(b) f(t) ≤ f(0)
(

1+σ
1+ωσt

) 1
σ

, for all t ≥ 0, whenever σ > 0.

3 Main results

Definition 3.1. (Weak solution). We say that function (u(t), v(t)) is weak solutions of the problem
(1.1) over Ω×[0, T ], if (u, v) ∈ L∞(0, T ;H1

0 (Ω))×L∞(0, T ;H1
0 (Ω)) with (ut, vt) ∈ L2(0, T ;H1

0 (Ω))×
L2(0, T ;H1

0 (Ω)) and satisfies the initial condition (u0, v0) ∈ H1
0 (Ω)×H1

0 (Ω)\{0}, and the following
equality

〈ut, ϕ〉+ 〈∇u,∇ϕ〉+
〈
‖∇u‖2γ ∇u,∇ϕ

〉
+ 〈∇ut,∇ϕ〉 =

∫
Ω

|u|q−2
u ln |u|ϕdx,

and

〈vt, ψ〉+ 〈∇v,∇ψ〉+
〈
‖∇v‖2γ ∇v,∇ψ

〉
+ 〈∇vt,∇ψ〉 =

∫
Ω

|v|q−2
v ln |v|ψdx,

for all (ϕ,ψ) ∈ H1
0 (Ω)×H1

0 (Ω) holds for a.e. t ∈ [0, T ], and 〈., .〉 means the inner product in space
L2(Ω); that is

〈η, ξ〉 =

∫
Ω

η(x)ξ(x)dx.

Definition 3.2. (Maximal Existence Time). Suppose that u be weak solutions of problem (1.1).
We define the maximal existence time Tmax as follows

Tmax = sup{T > 0 : u(t) exists on [0, T ]}.

Then

(i) If Tmax <∞, we say that u blows up in finite time and Tmax is the blow-up time;

(ii) If Tmax =∞, we say that u is global.

Theorem 3.3. (Global Existence). Let (u0, v0) ∈ H1
0 (Ω)×H1

0 (Ω). Then there is a unique global
weak solution (u, v) of (1.1) satisfying (u0, v0) . We have (u(t), v(t)) ∈ W holds for all 0 ≤ t < +∞,
and the energy estimate∫ t

0

(
‖uτ (τ)‖2H1

0 (Ω) + ‖vτ (τ)‖2H1
0 (Ω)

)
dτ + J(u, v) ≤ J(u0, v0), 0 ≤ t ≤ +∞.

Also, the solution decay exponentially provided (u0, v0) ∈ W.
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Proof. Let (u0, v0) ∈ W be the initial data. Let {wj}∞j=1 be a system of Galerkin base function in

space H1
0 (Ω) × H1

0 (Ω). Construct the approximate solution of (um(x, t), vm(x, t)) of the problem
(1.1). Let

um(x, t) =

m∑
j=1

amj(t)wj(x), (3.1)

and

vm(x, t) =

m∑
j=1

bmj(t)wj(x),

satisfying ∫
Ω

umtwidx+

∫
Ω

∇um∇widx

+

∫
Ω

(
‖∇um‖2 + ‖∇vm‖2

)γ
∇um∇widx +

∫
Ω

∇umt∇widx

=

∫
Ω

|um|q−2
um ln |um|widx, (3.2)

and ∫
Ω

vmtwidx+

∫
Ω

∇vm∇widx

+

∫
Ω

(
‖∇um‖2 + ‖∇vm‖2

)γ
∇vm∇widx +

∫
Ω

∇vmt∇widx

=

∫
Ω

|vm|q−2
vm ln |vm|widx, (3.3)

for i ∈ {1, 2, ...,m}. And as m→∞, we get

u0m =

m∑
j=1

amjwj → u0 strongly in H1
0 (Ω), (3.4)

and

v0m =

m∑
j=1

bmjwj → v0 strongly in H1
0 (Ω). (3.5)

Multiplying (3.2) by h′mj(t), and (3.3) by g′mj(t), summing for i = 1, 2, ...,m, we have∫
|umt|2 dx+

1

2

[
1 +

(
‖∇um‖2 + ‖∇vm‖2

)γ] d
dt
‖∇um‖2 +

∫
|∇umt|2 dx

=
d

dt

(
1

q

∫
Ω

|um|q ln |um| dx−
1

q2

∫
Ω

|um|q dx
)
, (3.6)

and ∫
|vmt|2 dx+

1

2

[
1 +

(
‖∇um‖2 + ‖∇vm‖2

)γ] d
dt
‖∇vm‖2 +

∫
|∇vmt|2 dx

=
d

dt

(
1

q

∫
Ω

|vm|q ln |vm| dx−
1

q2

∫
Ω

|vm|q dx
)
. (3.7)
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Integrating (3.6) and (3.7) over (0, t) and then summarizing the obtained results, for 0 ≤ t < ∞,
we obtain∫ t

0

(
‖umτ‖2 + ‖vmτ‖2

)
dτ +

∫ t

0

(
‖∇umτ‖2 + ‖∇vmτ‖2

)
dτ + J(um, vm) = J(u0m, v0m).

Recalling (3.4) and (3.5) yields J(u0m, v0m)→ J(u0, v0) as m→∞, which says that for sufficiently
large m ∫ t

0

(
‖umτ (τ)‖2H1

0 (Ω) + ‖vmτ (τ)‖2H1
0 (Ω)

)
dτ + J(um, vm) < d. (3.8)

Then from (2.3) it gives

J(um, vm) =
1

q
I(um, vm) +

q − 2

2q

(
‖∇um‖2 + ‖∇vm‖2

)
+
q − 2γ − 2

2qγ + 2q

(
‖∇um‖2 + ‖∇vm‖2

)γ+1

+
1

q2

(
‖um‖qq + ‖vm‖qq

)
.

(3.4) and (3.5), for sufficiently large m and 0 ≤ t < ∞, we get (u0m, v0m) ∈ W. From (3.8), we
have that (um (t) , vm (t)) ∈ W for sufficiently large m and 0 ≤ t < ∞. Thus for 0 ≤ t < ∞ and
q ≥ 2γ + 2, (3.8) gives∫ t

0

(
‖umτ‖2 + ‖vmτ‖2

)
dτ +

∫ t

0

(
‖∇umτ‖2 + ‖∇vmτ‖2

)
dτ

+
q − 2

2q

(
‖∇um‖2 + ‖∇vm‖2

)
+
q − 2γ − 2

2qγ + 2q

(
‖∇um‖2 + ‖∇vm‖2

)γ+1

+
1

q2

(
‖um‖qq + ‖vm‖qq

)
< d. (3.9)

For a sufficiently large m and 0 ≤ t <∞, (3.9) gives∫ t

0

‖umτ‖2 dτ < d,∫ t

0

‖vmτ‖2 dτ < d,

∫ t

0

‖∇umτ‖2 dτ < d,∫ t

0

‖∇vmτ‖2 dτ < d,

‖∇um‖2 <
2q

q − 2
d,

‖∇vm‖2 <
2q

q − 2
d,
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then we have

umt and vmt are bounded in L∞(0,∞;L2(Ω)),

um and vm are bounded in L∞(0,∞;H1
0 (Ω)),

umt and vmt are bounded in L2(0,∞;L2(Ω)).

Using the Sobolev embedding inequality

‖∇u‖2 + ‖∇v‖2 ≥ C2
∗

(
‖u‖2q+1 + ‖v‖2q+1

)
,

for 0 ≤ t <∞, we have∫
Ω

|um|q ln |um| dx+

∫
Ω

|vm|q ln |vm| dx ≤ ‖um‖q+1
q+1 + ‖vm‖q+1

q+1

≤ Cq+1
∗

(
‖um‖q+1

+ ‖vm‖q+1
)

<

(
2q

q − 2
d

) q+1
2

. (3.10)

Integrating (3.2) and (3.3) with respect to t, for 0 ≤ t <∞, we get∫
Ω

ut(t)wdx+

∫
Ω

∇u(t)∇wdx

+

∫
Ω

(
‖∇u(t)‖2 + ‖∇v(t)‖2

)γ
∇u(t)∇wdx+

∫
Ω

∇ut(t)∇wdx

=

∫
Ω

|u(t)|q−2
u(t) ln |u(t)|wdx, (3.11)

and ∫
Ω

vt(t)wdx+

∫
Ω

∇v(t)∇wdx

+

∫
Ω

(
‖∇u(t)‖2 + ‖∇v(t)‖2

)γ
∇v(t)∇wdx+

∫
Ω

∇vt(t)∇wdx

=

∫
Ω

|v(t)|q−2
v(t) ln |v(t)|wdx, (3.12)

for all w ∈ H1
0 (Ω) and for almost every t ∈ [0,∞]. So, (u, v) is a desired solution of problem (1.1).

Now, we discuss the decay results.
Since (u0, v0) ∈ W, similar to the first case, we obtain (u, v) ∈ W for any t ∈ [0,∞). By (2.3),
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(3.11) and (3.12), we get

J(u0, v0) > J(u, v)

=
1

q
I(u, v) +

q − 2

2q

(
‖∇u‖2 + ‖∇v‖2

)
+
q − 2γ − 2

2qγ + 2q

(
‖∇u‖2 + ‖∇v‖2

)γ+1

+
1

q2

(
‖u‖qq + ‖v‖qq

)
,

≥ q − 2

2q

(
‖∇u‖2 + ‖∇v‖2

)
+
q − 2γ − 2

2qγ + 2q

(
‖∇u‖2 + ‖∇v‖2

)γ+1

+
1

q2

(
‖u‖qq + ‖v‖qq

)
. (3.13)

For I(u, v) > 0, (2.4) and Lemma 2.2, there exists a λ∗ > 1 such that I(λ∗u, λ∗v) = 0. We obtain

d ≤ J(λ∗u, λ∗v)

=
1

q
I(λ∗u, λ∗v) +

q − 2

2q

(
‖∇ (λ∗u)‖2 + ‖∇ (λ∗v)‖2

)
+
q − 2γ − 2

2qγ + 2q

(
‖∇ (λ∗u)‖2 + ‖∇ (λ∗v)‖2

)γ+1

+
1

q2

(
‖λ∗u‖qq + ‖λ∗v‖qq

)
≤ (λ∗)qlim inf

k→∞

[
q − 2

2q

(
‖∇u‖2 + ‖∇v‖2

)
+
q − 2γ − 2

2qγ + 2q

(
‖∇u‖2 + ‖∇v‖2

)γ+1
]

+(λ∗)qlim inf
k→∞

1

q2

(
‖u‖qq + ‖v‖qq

)
. (3.14)

Using (3.13) and (3.14), we have
d ≤ (λ∗)qJ(u0, v0),

which yields that

λ∗ ≥
(

d

J(u0, v0)

) 1
q

. (3.15)
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It follows from (2.2) that

0 = I(λ∗u, λ∗v)

=
(
‖∇ (λ∗u)‖2 + ‖∇ (λ∗v)‖2

)
+
(
‖∇ (λ∗u)‖2 + ‖∇ (λ∗v)‖2

)γ+1

−
(∫

Ω

|λ∗u|q ln |λ∗u| dx+

∫
Ω

|λ∗v|q ln |λ∗v| dx
)

= (λ∗)2
(
‖∇u‖2 + ‖∇v‖2

)
+ (λ∗)2(γ+1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

−(λ∗)q
(∫

Ω

|u|q ln |u| dx+

∫
Ω

|v|q ln |v| dx
)
− (λ∗)q lnλ∗

(∫
Ω

|u|q dx+

∫
Ω

|v|q dx
)

= (λ∗)qI(u, v) + (λ∗)2
(
‖∇u‖2 + ‖∇v‖2

)
+ (λ∗)2(γ+1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

−(λ∗)q
(
‖∇u‖2 + ‖∇v‖2

)
− (λ∗)q

(
‖∇u‖2 + ‖∇v‖2

)γ+1

−(λ∗)q lnλ∗
(∫

Ω

|u|q dx+

∫
Ω

|v|q dx
)

= (λ∗)qI(u, v) +
[
(λ∗)2 − (λ∗)q

] (
‖∇u‖2 + ‖∇v‖2

)
+
[
(λ∗)2(γ+1) − (λ∗)q

] (
‖∇u‖2 + ‖∇v‖2

)γ+1

−(λ∗)q lnλ∗
(∫

Ω

|u|q dx+

∫
Ω

|v|q dx
)
. (3.16)

Using (3.15) and (3.16), we have

(λ∗)qI(u, v) =
[
(λ∗)q − (λ∗)2

] (
‖∇u‖2 + ‖∇v‖2

)
+
[
(λ∗)q − (λ∗)2(γ+1)

] (
‖∇u‖2 + ‖∇v‖2

)γ+1

+(λ∗)q lnλ∗
(∫

Ω

|u|q dx+

∫
Ω

|v|q dx
)

≥
[
(λ∗)q − (λ∗)2

] (
‖∇u‖2 + ‖∇v‖2

)
,

which implies that

I(u, v) ≥
[
1− (λ∗)2−q] (‖∇u‖2 + ‖∇v‖2

)
. (3.17)

It follows from (3.15) and (3.17) that

I(u, v) ≥

[
1−

(
d

J(u0, v0)

) 2−q
q

](
‖∇u‖2 + ‖∇v‖2

)
≥ C1

[
1−

(
d

J(u0, v0)

) 2−q
q

](
‖u‖2 + ‖v‖2

)
, (3.18)



168 Tuğrul Cömert, Erhan Pişkin

where C1 is constant. Also, by (3.18), we obtain

I(u(t)) ≥ 1

2

[
1−

(
d

J(u0, v0)

) 2−q
q

](
‖∇u‖2 + ‖∇v‖2

)
+

1

2
C1

[
1−

(
d

J(u0, v0)

) 2−q
q

](
‖u‖2 + ‖v‖2

)
≥ C2

(
‖∇u‖2 + ‖∇v‖2 + ‖u‖2 + ‖v‖2

)
= C2

(
‖u(t)‖2H1

0 (Ω) + ‖v(t)‖2H1
0 (Ω)

)
, (3.19)

where

C2 = max

{
1

2

[
1−

(
d

J(u0, v0)

) 2−q
q

]
,
C1

2

[
1−

(
d

J(u0, v0)

) 2−q
q

]}
.

Integrating the I(u, v) with respect to s over (t, T ), we obtain∫ T

t

I(u, v)ds = −
∫ T

t

∫
Ω

(us(s)u(s) + vs(s)v(s)) dxds

−
∫ T

t

∫
Ω

(∇us(s)∇u(s) +∇vs(s)∇v(s)) dxds

=
1

2

(
‖u(t)‖2H1

0 (Ω) + ‖v(t)‖2H1
0 (Ω)

)
− 1

2

(
‖u(T )‖2H1

0 (Ω) + ‖v(T )‖2H1
0 (Ω)

)
≤ C3

(
‖u(t)‖2H1

0 (Ω) + ‖v(t)‖2H1
0 (Ω)

)
. (3.20)

From (3.19) and (3.20), we have∫ T

t

C2

(
‖u(t)‖2H1

0 (Ω) + ‖v(t)‖2H1
0 (Ω)

)
ds ≤ C3

(
‖u(t)‖2H1

0 (Ω) + ‖v(t)‖2H1
0 (Ω)

)
for all t ∈ [0, T ]. (3.21)

Let T → +∞ in (3.21), we can get∫ ∞
t

(
‖u(t)‖2H1

0 (Ω) + ‖v(t)‖2H1
0 (Ω)

)
ds ≤ C4

(
‖u(t)‖2H1

0 (Ω) + ‖v(t)‖2H1
0 (Ω)

)
,

where C4 = C3

C2
. From Lemma 2.5, we have

‖u(t)‖2H1
0 (Ω) + ‖v(t)‖2H1

0 (Ω) ≤
(
‖u(0)‖2H1

0 (Ω) + ‖v(0)‖2H1
0 (Ω)

)
e1− t

C4 .

The above inequality implies that the solution (u, v) decays exponentially. q.e.d.
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[23] E. Pişkin and H. Yüksekkaya, Blow-up of solutions for a logarithmic quasilinear hyperbolic
equation with delay term, Journal of Mathematical Analysis, 12(1) (2021) 56-64.
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